Analysis of the modulation by serotonin of a voltage-dependent potassium current in sensory neurons of Aplysia.
نویسندگان
چکیده
Potassium currents in pleural sensory neurons of Aplysia were studied under control conditions and in the presence of serotonin (5-HT). Using pharmacological techniques we isolated a current that we refer to as IK,V. Although it is not known whether IK,V represents a distinct type of membrane channel, we described its properties using a Hodgkin-Huxley type model. The effects of 5-HT on IK,V were complex. 5-HT decreased by 50% the steady-state magnitude (Iss) of IK,V in response to a voltage-clamp pulse from -50 mV to +20 mV. In addition, 5-HT significantly slowed both activation kinetics (the time constant of activation was increased by 29% at +20 mV) and inactivation kinetics (the time constant of inactivation was increased by 518% at +20 mV). Mathematical descriptions of IK,V in control conditions and in the presence of 5-HT were used to estimate the relative contribution of serotonergic modulation of IK,V to the total 5-HT-induced modulation of membrane currents. Effects of 5-HT on IK,V account for more than 87% of the 5-HT-induced reduction in outward current during the first 20 ms of a voltage-clamp pulse to +20 mV. This result implies that 5-HT exerts many of its effects on spike width in sensory neurons via modulation of IK,V. Effects of 5-HT on IK,V are consistent with a model in which the maximal conductance underlying the current is decreased by 50%, and the rate constants between open and closed states of both the activation and inactivation processes are diminished in magnitude across all membrane potentials.
منابع مشابه
Presynaptic modulation of voltage-dependent Ca2+ current: mechanism for behavioral sensitization in Aplysia californica.
Behavioral sensitization of the gill-withdrawal reflex of Aplysia is the result of a prolonged increase in transmitter release from the presynaptic terminals of sensory neurons. Earlier work suggested that this presynaptic facilitation might be mediated by a serotonin-sensitive adenylate cyclase in the sensory neuron terminals. Here we present evidence that presynaptic facilitation results from...
متن کاملActivators of protein kinase C mimic serotonin-induced modulation of a voltage-dependent potassium current in pleural sensory neurons of Aplysia.
1. In the pleural mechanoafferent sensory neurons of Aplysia, serotonin (5-HT)-induced spike broadening consists of at least two components: a cAMP and protein kinase A (PKA)-dependent, rapidly developing component and a protein kinase C (PKC)-dependent, slowly developing component. Voltage-clamp experiments were conducted to identify currents that are modulated by PKC and thus may contribute t...
متن کاملFine tuning of neuronal electrical activity: modulation of several ion channels by intracellular messengers in a single identified nerve cell.
The identified neurone R15 in the abdominal ganglion of the marine mollusc, Aplysia californica, exhibits a rhythmic bursting pattern of electrical activity. This pattern, which is generated endogenously by the interaction of several voltage- and time-dependent ion currents in R15's membrane, is subject to long-term modulation by synaptic stimulation and application of several neurotransmitters...
متن کاملModulation of a transient K+ current in the pleural sensory neurons of Aplysia by serotonin and cAMP: implications for spike broadening.
To study the contribution of cAMP to the spike broadening produced by serotonin (5-HT) in the pleural sensory neurons of the tail withdrawal reflex, we utilized two phosphodiesterase-resistant cAMP analogs: the Sp diastereomer of cyclic adenosine 3',5'-monophosphothioate (Sp-cAMP[S]), which activates protein kinase A, and the antagonist Rp diastereomer of cyclic adenosine 3',5'-monophosphothioa...
متن کاملModulation of the serotonin-sensitive potassium channel in Aplysia sensory neurone cell body and growth cone.
Using single-channel recording, we have been able to obtain some insight into the molecular mechanism of a modulatory transmitter action in Aplysia sensory neurones. Our results show that serotonin produces a slow EPSP and increases action potential duration in the sensory neurones by producing prolonged closures of the S potassium channel. Such closures appear to be mediated by cyclic AMP-depe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 66 3 Pt 1 شماره
صفحات -
تاریخ انتشار 1994